Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Extracellular-controlled breast cancer cell formation and growth using non-UV patterned hydrogels via optically-induced electrokinetics.

Identifieur interne : 000188 ( Main/Exploration ); précédent : 000187; suivant : 000189

Extracellular-controlled breast cancer cell formation and growth using non-UV patterned hydrogels via optically-induced electrokinetics.

Auteurs : RBID : pubmed:24531214

Abstract

The culturing of cancer cells on micropatterned substrates can provide insight into the factors of the extracellular environment that enable the control of cell growth. We report here a novel non-UV-based technique to quickly micropattern a poly-(ethylene) glycol diacrylate (PEGDA)-based hydrogel on top of modified glass substrates, which were then used to control the growth patterns of breast cancer cells. Previously, the fabrication of micropatterned substrates required relatively complicated steps, which made it impractical for researchers to rapidly and systematically investigate the effects of different cell growth patterns. The technique presented herein operates on the principle of optically-induced electrokinetics (OEKs) and uses computer-generated projection light patterns to dynamically pattern the hydrogel on a hydrogenated amorphous silicon (a-Si:H) thin-film, atop an indium tin oxide (ITO) glass substrate. This technique allows us to pattern lines, circles, pentagons, and more complex shapes in the hydrogel with line widths below 3 μm and thicknesses of up to 6 μm within 8 s by simply controlling the projected illumination pattern and applying an appropriate AC voltage between the two ITO glass substrates. After separating the glass substrates to expose the patterned hydrogel, we experimentally demonstrate that MCF-7 breast cancer cells will adhere to the bare a-Si:H surface, but not to the hydrogel patterned in various geometric shapes and sizes. Theoretical analysis and finite-element model simulations reveal that the dominant OEK forces in our technique are the dielectrophoresis (DEP) force and the electro-osmosis force, which enhance the photo-initiated cross-linking reaction in the hydrogel. Our preliminary cultures of breast cancer cells demonstrate that this reported technique could be applied to effectively confine the growth of cancer cells on a-Si:H surfaces and affect individual cell geometry during their growth.

DOI: 10.1039/c3lc51247a
PubMed: 24531214

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Extracellular-controlled breast cancer cell formation and growth using non-UV patterned hydrogels via optically-induced electrokinetics.</title>
<author>
<name sortKey="Liu, Na" uniqKey="Liu N">Na Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, China. lqliu@sia.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Liang, Wenfeng" uniqKey="Liang W">Wenfeng Liang</name>
</author>
<author>
<name sortKey="Liu, Lianqing" uniqKey="Liu L">Lianqing Liu</name>
</author>
<author>
<name sortKey="Wang, Yuechao" uniqKey="Wang Y">Yuechao Wang</name>
</author>
<author>
<name sortKey="Mai, John D" uniqKey="Mai J">John D Mai</name>
</author>
<author>
<name sortKey="Lee, Gwo Bin" uniqKey="Lee G">Gwo-Bin Lee</name>
</author>
<author>
<name sortKey="Li, Wen J" uniqKey="Li W">Wen J Li</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2014">2014</date>
<idno type="doi">10.1039/c3lc51247a</idno>
<idno type="RBID">pubmed:24531214</idno>
<idno type="pmid">24531214</idno>
<idno type="wicri:Area/Main/Corpus">000153</idno>
<idno type="wicri:Area/Main/Curation">000153</idno>
<idno type="wicri:Area/Main/Exploration">000188</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The culturing of cancer cells on micropatterned substrates can provide insight into the factors of the extracellular environment that enable the control of cell growth. We report here a novel non-UV-based technique to quickly micropattern a poly-(ethylene) glycol diacrylate (PEGDA)-based hydrogel on top of modified glass substrates, which were then used to control the growth patterns of breast cancer cells. Previously, the fabrication of micropatterned substrates required relatively complicated steps, which made it impractical for researchers to rapidly and systematically investigate the effects of different cell growth patterns. The technique presented herein operates on the principle of optically-induced electrokinetics (OEKs) and uses computer-generated projection light patterns to dynamically pattern the hydrogel on a hydrogenated amorphous silicon (a-Si:H) thin-film, atop an indium tin oxide (ITO) glass substrate. This technique allows us to pattern lines, circles, pentagons, and more complex shapes in the hydrogel with line widths below 3 μm and thicknesses of up to 6 μm within 8 s by simply controlling the projected illumination pattern and applying an appropriate AC voltage between the two ITO glass substrates. After separating the glass substrates to expose the patterned hydrogel, we experimentally demonstrate that MCF-7 breast cancer cells will adhere to the bare a-Si:H surface, but not to the hydrogel patterned in various geometric shapes and sizes. Theoretical analysis and finite-element model simulations reveal that the dominant OEK forces in our technique are the dielectrophoresis (DEP) force and the electro-osmosis force, which enhance the photo-initiated cross-linking reaction in the hydrogel. Our preliminary cultures of breast cancer cells demonstrate that this reported technique could be applied to effectively confine the growth of cancer cells on a-Si:H surfaces and affect individual cell geometry during their growth.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="In-Process">
<PMID Version="1">24531214</PMID>
<DateCreated>
<Year>2014</Year>
<Month>03</Month>
<Day>04</Day>
</DateCreated>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1473-0189</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2014</Year>
<Month>Apr</Month>
<Day>7</Day>
</PubDate>
</JournalIssue>
<Title>Lab on a chip</Title>
<ISOAbbreviation>Lab Chip</ISOAbbreviation>
</Journal>
<ArticleTitle>Extracellular-controlled breast cancer cell formation and growth using non-UV patterned hydrogels via optically-induced electrokinetics.</ArticleTitle>
<Pagination>
<MedlinePgn>1367-76</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1039/c3lc51247a</ELocationID>
<Abstract>
<AbstractText>The culturing of cancer cells on micropatterned substrates can provide insight into the factors of the extracellular environment that enable the control of cell growth. We report here a novel non-UV-based technique to quickly micropattern a poly-(ethylene) glycol diacrylate (PEGDA)-based hydrogel on top of modified glass substrates, which were then used to control the growth patterns of breast cancer cells. Previously, the fabrication of micropatterned substrates required relatively complicated steps, which made it impractical for researchers to rapidly and systematically investigate the effects of different cell growth patterns. The technique presented herein operates on the principle of optically-induced electrokinetics (OEKs) and uses computer-generated projection light patterns to dynamically pattern the hydrogel on a hydrogenated amorphous silicon (a-Si:H) thin-film, atop an indium tin oxide (ITO) glass substrate. This technique allows us to pattern lines, circles, pentagons, and more complex shapes in the hydrogel with line widths below 3 μm and thicknesses of up to 6 μm within 8 s by simply controlling the projected illumination pattern and applying an appropriate AC voltage between the two ITO glass substrates. After separating the glass substrates to expose the patterned hydrogel, we experimentally demonstrate that MCF-7 breast cancer cells will adhere to the bare a-Si:H surface, but not to the hydrogel patterned in various geometric shapes and sizes. Theoretical analysis and finite-element model simulations reveal that the dominant OEK forces in our technique are the dielectrophoresis (DEP) force and the electro-osmosis force, which enhance the photo-initiated cross-linking reaction in the hydrogel. Our preliminary cultures of breast cancer cells demonstrate that this reported technique could be applied to effectively confine the growth of cancer cells on a-Si:H surfaces and affect individual cell geometry during their growth.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Na</ForeName>
<Initials>N</Initials>
<Affiliation>State Key Lab of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, China. lqliu@sia.cn.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Liang</LastName>
<ForeName>Wenfeng</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Lianqing</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yuechao</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mai</LastName>
<ForeName>John D</ForeName>
<Initials>JD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Gwo-Bin</ForeName>
<Initials>GB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Wen J</ForeName>
<Initials>WJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Lab Chip</MedlineTA>
<NlmUniqueID>101128948</NlmUniqueID>
<ISSNLinking>1473-0189</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>2</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>2</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>2</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1039/c3lc51247a</ArticleId>
<ArticleId IdType="pubmed">24531214</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000188 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000188 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24531214
   |texte=   Extracellular-controlled breast cancer cell formation and growth using non-UV patterned hydrogels via optically-induced electrokinetics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24531214" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024